

Autonomous Multi-Format In-Situ Observation Platform for Atmospheric Carbon Dioxide and Methane Monitoring in Permafrost & Wetlands - MISO

(TOPIC ID: HORIZON-CL6-2022-GOVERNANCE-01-07-New technologies for acquiring in-situ observation datasets to address climate change effects)

> Speaker: Rune Åvar Ødegård (<u>ruo@nilu.no</u>), Director of Digitalisation

Project coordinator: Tuan Vu Cao (tvc@nilu.no)

NILU-Norwegian Institute for Air Research

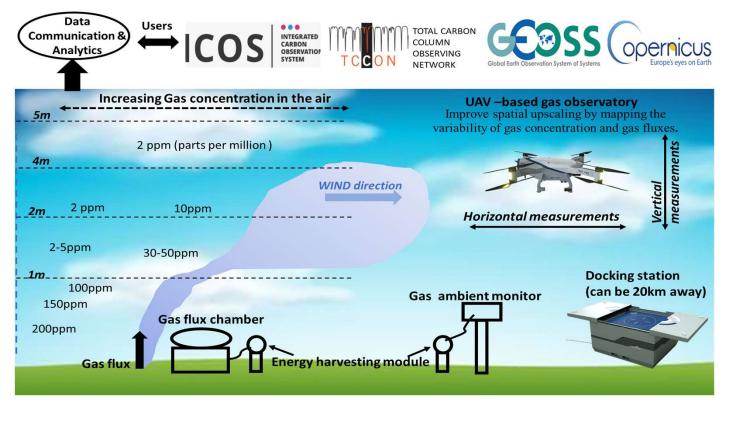
Autonomous Multi-Format In-Situ Observation Platform for Atmospheric Carbon Dioxide and Methane Monitoring in Permafrost & Wetlands - MISO

Participant No.	Participant organisation name	Country
1 (Coordinator)	NILU - NORWEGIAN INSTITUTE FOR AIR RESEARCH	NORWAY
2	SA - SENSEAIR AB	SWEDEN
3	QUB-QUEEN'S UNIVERSITY OF BELFAST	UK
4	UiT-UNIVERSITY OF TROMSØ	NORWAY
5	TEG - TEGNOLOGY APS	DENMARK
6	AWI- ALFRED WEGENER INSTITUTE FOR POLAR AND MARINE RESEARCH	GERMANY
7	AZD- AZUR DRONES	FRANCE
8	ISP-CNR -NATIONAL RESEARCH COUNCIL OF ITALY - INSTITUTE OF POLAR SCIENCE	ITALY

For the topic: New technologies for acquiring in-situ observation datasets to address climate change effects

TOPIC ID: HORIZON-CL6-2022-GOVERNANCE-01-07

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl6-2022-governance-01-07 TOTAL BUDGET: 3.5 mil EUR (Period: 01.01.2023 – 30.06.2026)



The Gaps: lack of in-situ measurements in hard-to-reach areas to address climate change effects

Meas. type	Advantages	Disadvantage
Space-based	achieve complete global spatial coverage at long or	do not have sufficient coverage for reliable
measurements (e.g	short timescales	measurements at small scales
Satellite measurements):		
Aircraft-based	vertical profiles of GHG concentrations,	high cost, not long time series, limited temporal
measurement		snapshot
Tower-based	precise across the towers sensitivity footprint; &	long time series can not be guaranteed, high cost
measurement	consistent measurements.	and difficult to maintain
UAV-based measurement	high temporal-spatial resolution with specific	limited temporal snapshot, and not able to
	targets of emission sources	provide long time series of measurements
Direct-source	quantify emission rates from a small source area,	require sufficient power supply and human
measurement	portable and can be deployed in remote areas	resources, only capture short time measurement
		periods.

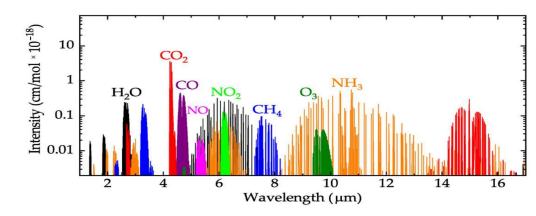
<u>The main objective of MISO</u> is to develop and deploy an <u>autonomous</u> in-situ observation platform for use in hard-to-reach areas, for detecting and quantifying carbon dioxide and methane gasses.

We will develop 3 <u>autonomous</u> observatories to monitor CO2 and CH4

Observatories	Target measurements
Static observatory 1- continuous ambient GHG monitor (edge intelligence)	Gas ambient concentration in the air in Arctic and Wetland
Static observatory 2- GHG flux chambers (edge intelligence)	Gas fluxes from the sources in Arctic and Wetlands
UAV-based observatory (Drone-in a box system) (edge intelligence)	Mapping the variability of gas concentration& fluxes. Monitoring "hotspots".

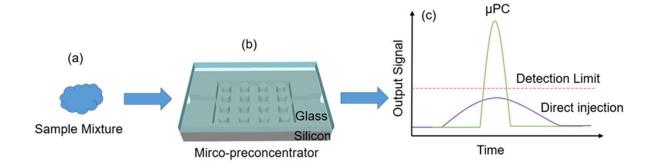
MISO AMBITION:

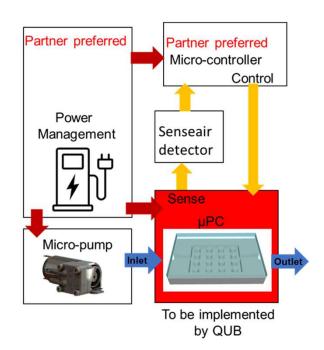
<u>Ambition 1</u>-New low-cost non-dispersive infrared sensors with breakthrough characteristics for GHG monitoring in harsh environmental conditions.


- NEW SENSING TECHNOLOGIES (NDIR-nondispersive infrared sensor) for CO2 and CH4 detection (by Senseair)

K96 sensor developed by Senseair

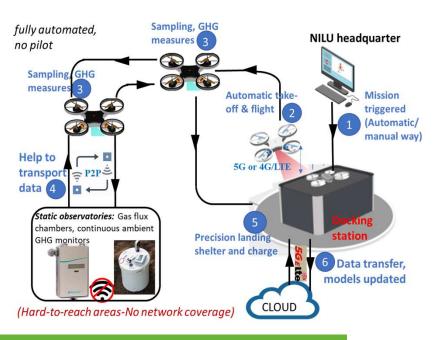
Low-cost gas sensing technologies comparison (performance scale: excellent – high – medium – poor). Thermal Conductive: TC: Metal-Oxide Semiconductor: MOS


PARA-	Low-cost gas sensors technology performance				
METERS	Photonic	MOS	Catalytic	TC	
Sensitivity	Excellent	Excellent	High	Poor	
Selectivity	Excellent	Medium	Poor	Poor	
Response time	High	Excellent	High	Excellent	
Stability	High	High	Poor	High	



<u>Ambition 1</u>-New low-cost non-dispersive infrared sensors with breakthrough characteristics for GHG monitoring in harsh environmental conditions.

- preconcentrator (μ PC) to improve the detection limit of NDIR sensors including preconditioning (increasing concentration) of the target gas (by QUB)



<u>Ambition 2--</u> Cost-effective observatories for in-situ GHG observations in areas facing extreme physical conditions. (SO3, WP3)

- Cost-efficient static observatories: 1) continuous ambient GHG monitoring device
 (by <u>NILU</u>) and 2) greenhouse gas flux measurement chambers (by <u>AWI</u>)
- UAV-based observatory using drone-in-a-box-system (autonomous drone and docking station) (By **AZD (France)**, **NILU**, **Senseair**)

<u>Ambition 2--</u> Cost-effective observatories for in-situ GHG observations in areas facing extreme physical conditions. (SO3, WP3)

- <u>UiT (Norway)</u>: Smart software using CPS approaches (e.g., edge intelligence algorithms, data analytics libraries and runtimes) enabling in-situ observatories operating energy-efficiently (improve energy efficiency of in-situ analytics by an order of magnitude), extending operational lifetime and tolerating typical faults in extreme environments
- QUB (UK): Innovative and reliable sensor communication solutions in Arctic, permafrost and wetland areas, even for areas with no network coverage (P2P) to guarantee data transmission.
- <u>TEG (Denmark):</u> Innovative combined energy solutions for Self-Powered or battery-life extended static observatories in hard-to-reach areas to guarantee long-time series of in situ climate gas observations.



Ambition 3- New frontiers for breakthrough understanding of fine-scaled carbon budgets in Wetlands, and the Arctic to address climate change effects (SO4, WP4)

demonstrate MISO observation platform in Arctic and Wetland to provide break-through understanding of high-latitude carbon budgets.

Ambition 4- Enhancing existing elements and systems with sustained long-term, high quality and interoperable data (SO5, WP5) (by NILU)

IMPACT: Enhancing existing elements and systems with sustained long-term, high quality and interoperable data

Contact: NILU-Norwegian Institute for Air Research

Project coordinator: Tuan Vu Cao (tvc@nilu.no)

Rune Åvar Ødegård (<u>ruo@nilu.no</u>), Director of Digitalisation

Q&A