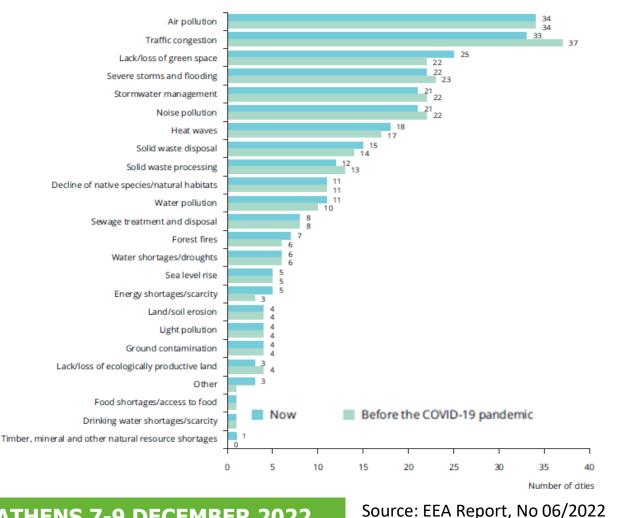


CURE: Copernicus for Urban Resilience in Europe

Giorgos Somarakis

RSLab-FORTH

Learn more here:



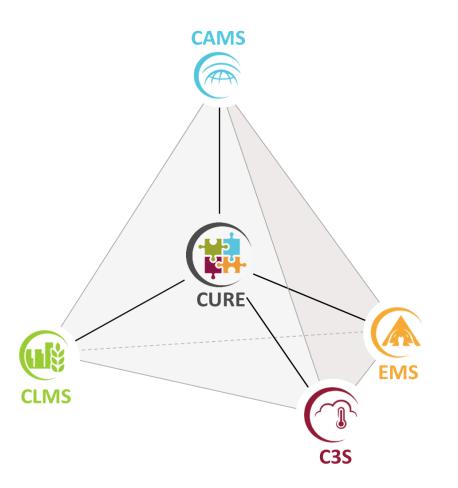
Urban Sustainability in Europe: Challenges & Responses

Climate Change Mitigation

- **15 Minute City Solutions**
- 30 Minute City Region + **Transit-oriented Development**

Climate Change Adaptation

- Nature-Based Solutions
- Urban Flood Risk / Subsidence

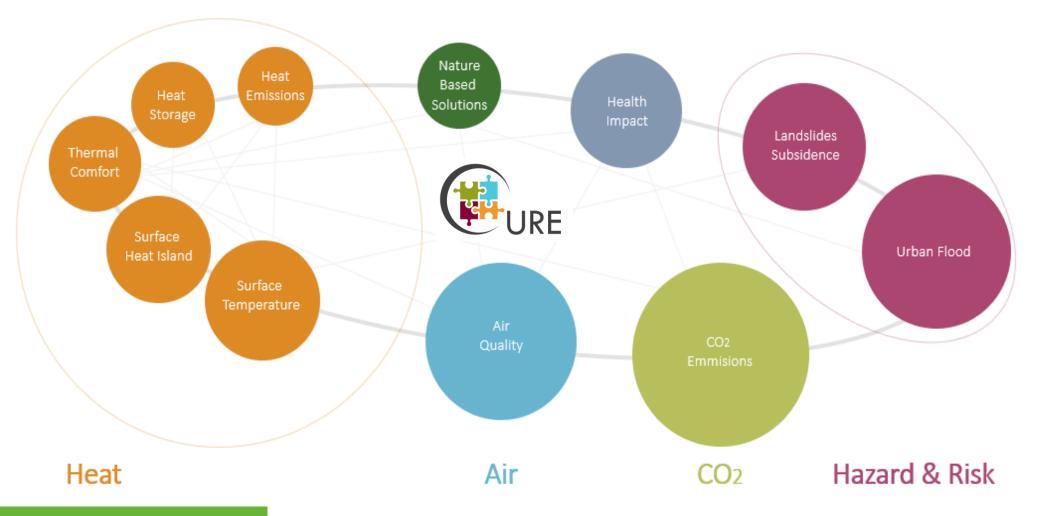

Healthy cities

- Reducing Car Use and **Promoting Active Travel**
- **Promoting Teleworking**

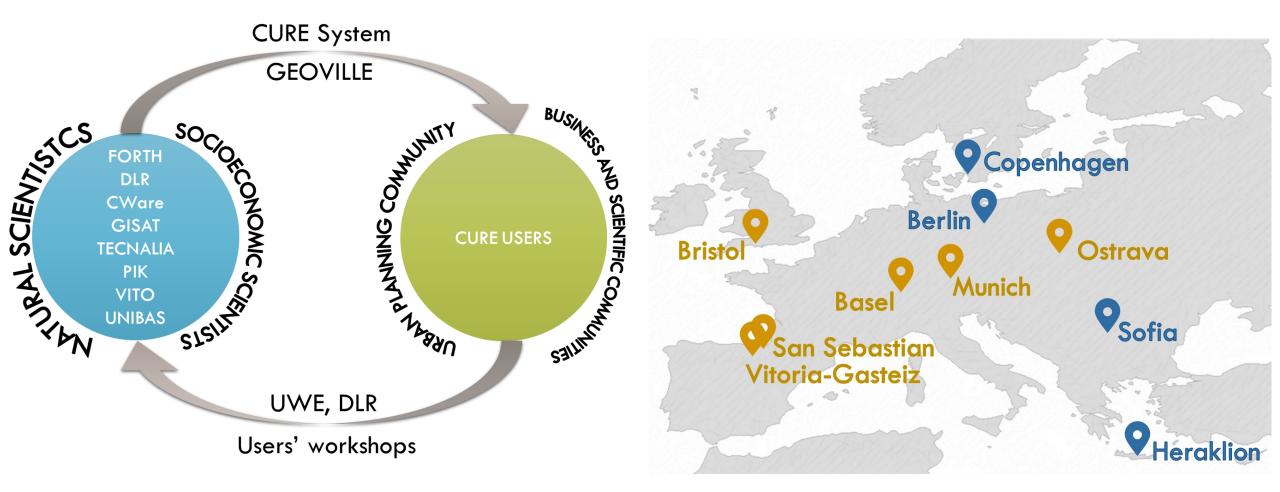
The CURE Concept

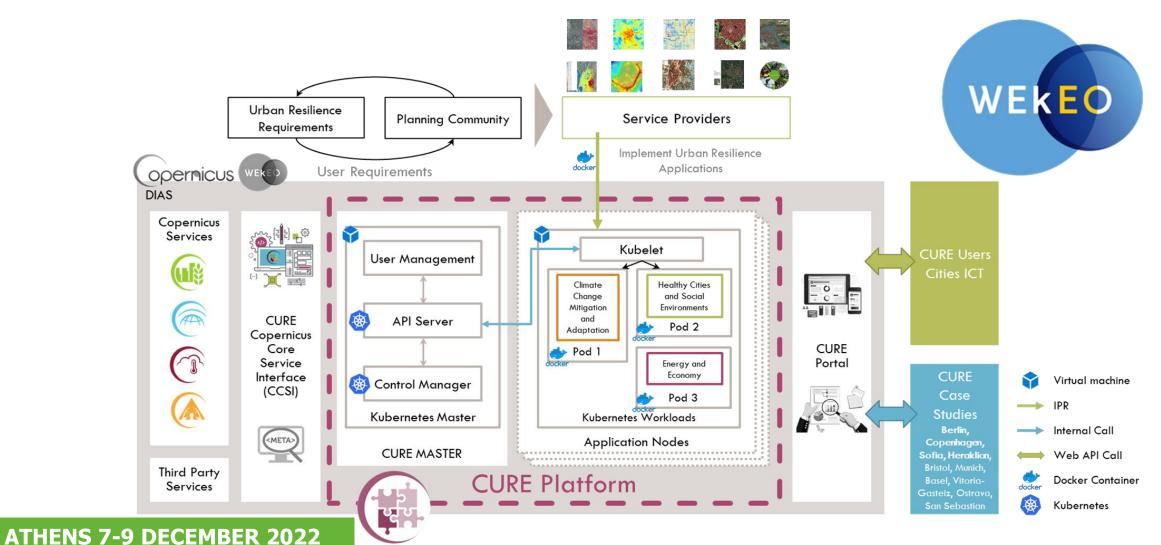
H2020-Space

- Provides the means to cope with the EO data underexploitation in the domain of sustainable and resilient urbanization, by combining products from CAMS, CLMS, C3S and EMS.
- Introduces novel ideas on how to develop applications across CCS in the domains:
 - climate change adaptation & mitigation
 - healthy cities and social environments
 - energy and economy



Why CURE?


- Urban environment is multidimensional: information from more than one Copernicus Core Services is needed.
- To address urban resilience spatially disaggregated information at local (neighbourhood) scale is necessary.
- Such information is not yet available from Copernicus Core Services.
- CURE: Cross-cutting applications among Core Services, capable of coping with the required scale, exploiting also third-party data, *in-situ* observations and modelling.



Users Engagement

Results: The CURE System

UUUUUUU

Results: The CURE Portal

http://portal.cure-copernicus.eu

The CURE project has developed 11 cross-cutting applications among the Copernicus Services, addressing the multi-dimensional nature of urban resilience:

Local Scale Surface Temperature Dynamics

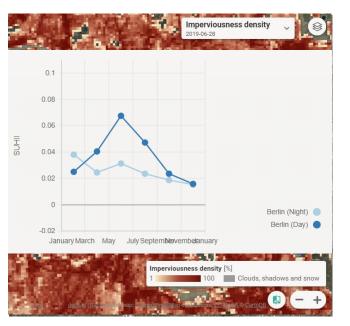
- Urban CO2 Emissions Monitoring
- Urban Flood Risk
- Nature Based Solutions
- Urban Air Quality
- Urban Thermal Comfor
- Socioeconomic perspective of Health Impacts
- Urban Subsidence, Movements and Deformation Risk
- Urban Heat Emissions Monitoring
- <u>Urban Heat Storage Monitoring</u>
- Surface Urban Heat Island Assessment

The CURE data products, linked to the CURE System, are open and available for demonstration and evaluation thought this portal.

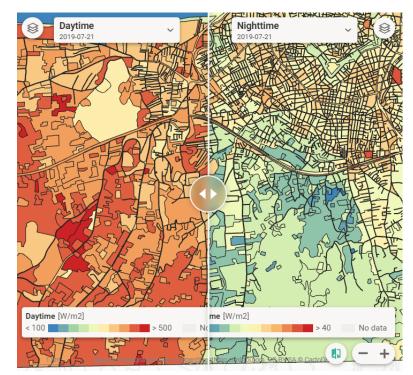
ATHENS 7-9 DECEMBER 2022

🏽 😯 🎔 🛅 R° 🚥

CURE has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 870337 <u>Terms of Use</u> / <u>Privacy Policy</u>


Results: Urban Heat

Surface Temperature


Skin temperature of the surface elements at the time of the satellite acquisition.

Surface Heat Island

Differences between "urban" and "non-urban" surface temperatures.


Heat Emissions

Heat emitted by the surface tending to increase the air temperature, therefore deteriorating the thermal comfort of people.

Results: Urban CO₂ Emissions

CURE Applications

CO₂ emissions from different sources/sinks for a year, season or week.

Products: mean daily and hourly CO_2 emissions for urban areas at 100 m × 100 m.

ATHENS 7-9 DECEMBER 2022

Service Rationale

Partitioning of CO₂ emission sources/sinks

Urban CO₂ emissions have a spatial dimension due to the heterogeneous nature of urban land use/land cover and urbanization. In this CURE application, the CO₂ emissions are partitioned into an anthropogenic (traffic, heating/cooling) and a biogenic component (urban green space):

- Anthropogenic source from fossil fuel combustion by cars
- Anthropogenic source from fossil fuel combustion through heating/cooling
- Biogenic source from human respiration
- Biogenic source/sink from plant/soil respiration and
- photosynthesis
- Eddy Covariance measurements
- A very fast and simultaneous measurement of vertical wind and CO₂ concentration provides the base for calculating the vertical exchange of CO₂ (CO₂ flux).

Intra-urban CO2 emission dynamics

Interactive maps help the user to assess, analyse and compare the CO₂ emissions from different sources/sinks for the area of investigation. Choose a map for the respective city, year, season and week days (working days/weekend). Hoover on the map to show the values for total CO₂ emissions as well the respective values for the individual contributions.

Urban CO2 Emissions Monitoring

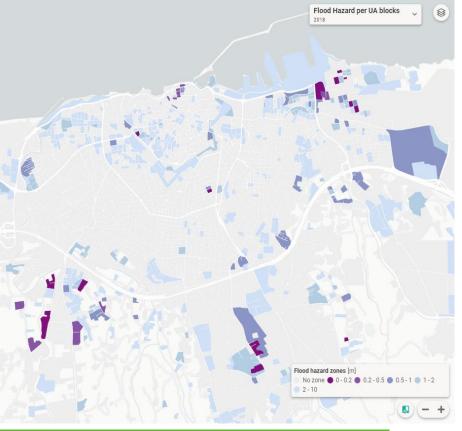
Heraklion ~

0 9 9

CAMS

Traffic

Monitor and analyse the CO, emissions in your city

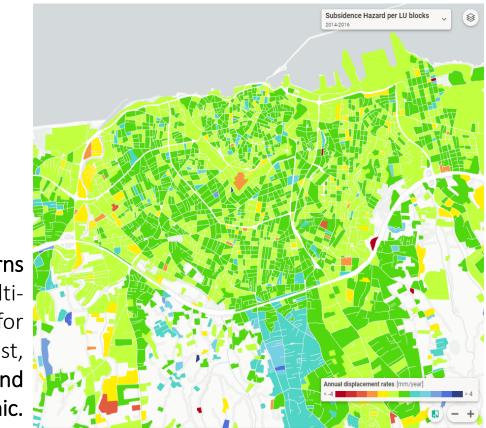

CLMS

Emissions Climate Change Mitigation Energy Consumption Green Areas

Urban CO2 Emissions Monitoring 🗸 /

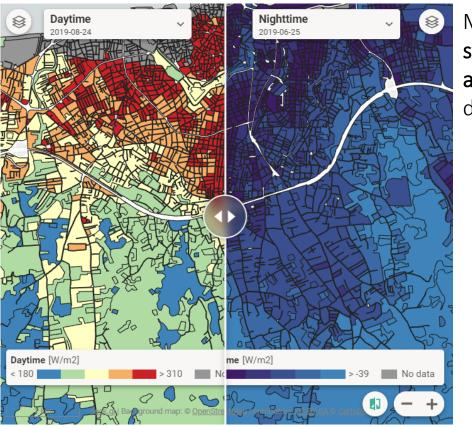
Results: Urban Hazard and Risk

Urban Flood



ATHENS 7-9 DECEMBER 2022

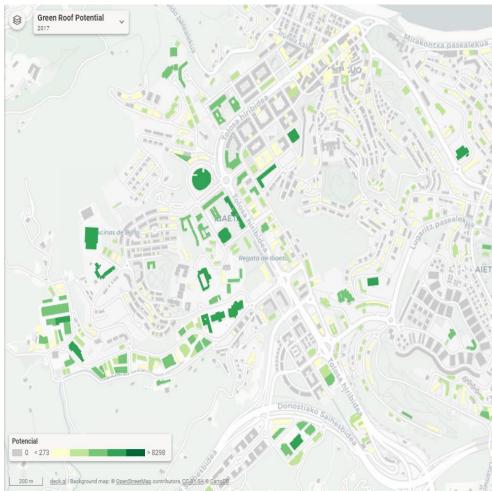
Quickly flood hazard zones (inundation depth zones) contributing to streamlining, efficient flood risk management and emergency response activities.


> Subsidence patterns monitoring in multitemporal manner for any area of interest, including trends and their dynamic.

Landslides, Ground Movement

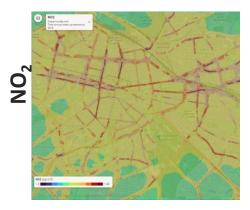
Results: Energy Storage & NBS

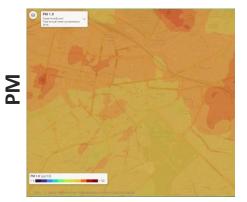
Heat Storage



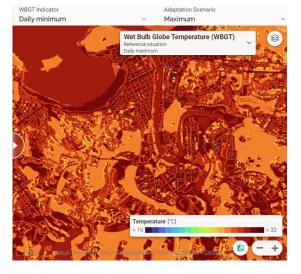
ATHENS 7-9 DECEMBER 2022

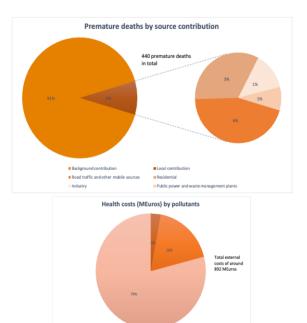
Monitoring heat stored during the day and emitted to the air during the night.


> Already existing green roofs and areas with high roof retrofitting potential by quantifying potential green roof installation according to specific installation conditions.


Green Roof Potential

Results: Air Quality, Thermal Comfort, Health


Air Quality


Street-level air pollution maps and data, providing info on pollution hotspots in the city center and the most important local sources for the **air** pollution for NO₂ and **PM**, allowing stakeholders to develop adequate air quality plans to reduce pollution.

Thermal Comfort

Indication on **human thermal comfort** by analyzing air temperature, radiation load, humidity and wind speed data.

Socio-economic Aspects

Health effects and costs of exposure to air pollution, using the Economic Valuation of Air pollution (EVA) model.

03 NO2 PM

ATHENS 7-9 DECEMBER 2022

Main Outcomes

- Online platform for combining CCS to support urban resilience.
- Uniform data for large samples of urban areas across Europe.
- Consistent measurements across European cities, including synergies between Copernicus core products and third-party data.
- Different approaches and models for better information on urban from and function at different spatial and temporal scales.

ي م کې

Conclusions

- Cities need data, models, simulation tools to make the right decision vis a vis investments into climate adaptation and mitigation; these investments are huge and urgent.
- Providing cross-cutting European data sets that can be tailored for local urban decision making makes good economic, environmental, social and strategic sense.
- CURE applications are optimized and automatized into scalable pre-operational services.
- The CURE application portfolio is not an ultimate solution, but robust information contribution to the crucial aspects of city solutions support.
- The overall CURE concept is extendable to additional apps to cover even more services, to find even more synergies.

Link with Horizon Europe Missions

АР	Cross-cutting applications	Berlin	Copenhagen	Sofia	Heraklion	Bristol	Ostrava	Basel	Munich	San Sebastian	Vitoria- Gasteiz
01	Local Scale Surface Temperature Dynamics (FORTH)	•	•	•	•	•	•	•	٠	•	•
02	Surface Urban Heat Island Assessment (DLR)	•	•	•	•	•	•	•	٠	•	•
03	Urban Heat Emissions Monitoring (UNIBAS)				•			•			
04	Urban CO ₂ Emissions Monitoring (UNIBAS)				•			•			
05	Urban Flood Risk (GISAT)				•		•				
06	Urban Subsidence, Movements and Deformation Risk (GISAT)				•		•				
07	Urban Air Quality (VITO)			•		•	•				
08	Urban Thermal Comfort (VITO)		•	•			•			•	
09	Urban Heat Storage Monitoring (FORTH)				•			•			
10	Nature Based Solutions (TECNALIA)			•						•	
11	Health Impacts (socioeconomic perspective) (<u>CWare</u>)		•	•		•					

M

The Vision

Become a focused **evidence-based toolkit** for assisting current and future policy making in the field.

- Short term: integrating specific CURE products into the Copernicus
 Operational Service Portfolio
- Long term: developing a Copernicus
 Urban Service

http://cure-copernicus.eu

Copernicus Evolution

HORIZON 2020

17 - 19 May 2023

http://jurse2023.org/

Thank you for your attention

Contact info

Giorgos Somarakis somarage@iacm.forth.gr tel. +30 2810 391792 FORTH/IACM http://rslab.gr

M).